Sunday, October 16, 2016

Verschieben Der Mittleren Glättung In R

Smoothing Daten entfernt zufällige Variation und zeigt Trends und zyklische Komponenten Inhärent in der Sammlung von Daten im Laufe der Zeit übernommen wird, ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Eine häufig verwendete Technik in der Industrie ist Glättung. Diese Technik zeigt, wenn sie richtig angewendet wird, deutlicher den zugrunde liegenden Trend, saisonale und zyklische Komponenten. Es gibt zwei verschiedene Gruppen von Glättungsmethoden Mittelungsmethoden Exponentielle Glättungsmethoden Mittelwertbildung ist der einfachste Weg, um Daten zu glätten Wir werden zunächst einige Mittelungsmethoden untersuchen, z. B. den einfachen Mittelwert aller vergangenen Daten. Ein Manager eines Lagers möchte wissen, wie viel ein typischer Lieferant in 1000-Dollar-Einheiten liefert. Er / sie nimmt eine Stichprobe von 12 Lieferanten, die zufällig die folgenden Ergebnisse erhalten: Der berechnete Mittelwert oder Durchschnitt der Daten 10. Der Manager beschließt, dies als Schätzung der Ausgaben eines typischen Lieferanten zu verwenden. Ist dies eine gute oder schlechte Schätzung Mittel quadratischen Fehler ist ein Weg, um zu beurteilen, wie gut ein Modell ist Wir berechnen die mittlere quadratische Fehler. Der Fehler true Betrag verbraucht minus die geschätzte Menge. Der Fehler quadriert ist der Fehler oben, quadriert. Die SSE ist die Summe der quadratischen Fehler. Die MSE ist der Mittelwert der quadratischen Fehler. MSE Ergebnisse zum Beispiel Die Ergebnisse sind: Fehler und quadratische Fehler Die Schätzung 10 Die Frage stellt sich: Können wir das Mittel verwenden, um Einkommen zu prognostizieren, wenn wir einen Trend vermuten Ein Blick auf die Grafik unten zeigt deutlich, dass wir dies nicht tun sollten. Durchschnittliche Gewichtungen alle früheren Beobachtungen gleich In Zusammenfassung, wir sagen, dass die einfachen Mittelwert oder Mittelwert aller vergangenen Beobachtungen ist nur eine nützliche Schätzung für die Prognose, wenn es keine Trends. Wenn es Trends, verwenden Sie verschiedene Schätzungen, die den Trend berücksichtigen. Der Durchschnitt wiegt alle früheren Beobachtungen gleichermaßen. Zum Beispiel ist der Durchschnitt der Werte 3, 4, 5 4. Wir wissen natürlich, dass ein Durchschnitt berechnet wird, indem alle Werte addiert werden und die Summe durch die Anzahl der Werte dividiert wird. Eine andere Methode, den Durchschnitt zu berechnen, ist die Addition jedes Wertes durch die Anzahl der Werte oder 3/3 4/3 5/3 1 1.3333 1.6667 4. Der Multiplikator 1/3 wird als Gewicht bezeichnet. Allgemein: bar frac sum links (frac rechts) x1 links (frac rechts) x2,. ,, Links (frac rechts) xn. Die (links (frac rechts)) sind die Gewichte und natürlich summieren sie sich auf 1.Mittelwerte in R Nach meinem besten Wissen hat R keine eingebaute Funktion zur Berechnung der gleitenden Mittelwerte. Mit der Filterfunktion können wir jedoch eine kurze Funktion für gleitende Mittelwerte schreiben: Wir können die Funktion auf beliebigen Daten verwenden: mav (data) oder mav (data, 11), wenn wir eine andere Anzahl von Datenpunkten angeben wollen Als die Standard-5-Plotterarbeiten wie erwartet: plot (mav (data)). Zusätzlich zu der Anzahl der Datenpunkte, über die gemittelt wird, können wir auch das Seitenargument der Filterfunktionen ändern: sides2 verwendet beide Seiten, Seiten1 verwendet nur vergangene Werte. Share this: Post navigation Kommentar-Navigation Kommentar navigationMoving durchschnittliche und exponentielle Glättungsmodelle Als ein erster Schritt, um über Mittel-Modelle, zufällige gehen Modelle und lineare Trend-Modelle, nicht saisonale Muster und Trends können mit einem gleitenden Durchschnitt oder Glättung Modell extrapoliert werden. Die grundlegende Annahme hinter Mittelwertbildung und Glättungsmodellen ist, dass die Zeitreihe lokal stationär mit einem sich langsam verändernden Mittelwert ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-ohne-Drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als "quotsmoothedquot" - Version der ursprünglichen Serie bezeichnet, da die kurzzeitige Mittelung die Wirkung hat, die Stöße in der ursprünglichen Reihe zu glätten. Durch Anpassen des Glättungsgrades (die Breite des gleitenden Durchschnitts) können wir hoffen, eine Art von optimaler Balance zwischen der Leistung des Mittelwerts und der zufälligen Wandermodelle zu erreichen. Die einfachste Art der Mittelung Modell ist die. Einfache (gleichgewichtige) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Mittelwert der letzten m Beobachtungen: (Hier und anderswo werde ich das Symbol 8220Y-hat8221 stehen lassen Für eine Prognose der Zeitreihe Y, die am frühestmöglichen früheren Zeitpunkt durch ein gegebenes Modell durchgeführt wird.) Dieser Mittelwert wird in der Periode t (m1) / 2 zentriert, was bedeutet, daß die Schätzung des lokalen Mittels dazu tendiert, hinter dem Wert zu liegen Wahren Wert des lokalen Mittels um etwa (m1) / 2 Perioden. Das durchschnittliche Alter der Daten im einfachen gleitenden Durchschnitt ist also (m1) / 2 relativ zu der Periode, für die die Prognose berechnet wird: dies ist die Zeitspanne, in der die Prognosen dazu tendieren, hinter den Wendepunkten in der Daten. Wenn Sie z. B. die letzten 5 Werte mitteln, werden die Prognosen etwa 3 Perioden spät sein, wenn sie auf Wendepunkte reagieren. Beachten Sie, dass, wenn m1, die einfache gleitende Durchschnitt (SMA) - Modell ist gleichbedeutend mit der random walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar der Länge des Schätzzeitraums), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um den besten Quotienten der Daten zu erhalten, d. H. Die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel einer Reihe, die zufällige Fluktuationen um ein sich langsam veränderndes Mittel zu zeigen scheint. Erstens können wir versuchen, es mit einem zufälligen Fußmodell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff entspricht: Das zufällige Fußmodell reagiert sehr schnell auf Änderungen in der Serie, aber dabei nimmt er viel von der quotnoisequot in der Daten (die zufälligen Fluktuationen) sowie das Quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen anwenden, erhalten wir einen glatteren Satz von Prognosen: Der 5-Term-einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Wegmodell. Das durchschnittliche Alter der Daten in dieser Prognose beträgt 3 ((51) / 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zu liegen. (Zum Beispiel scheint ein Abschwung in Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich erst nach mehreren Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie beim zufälligen Weg Modell. Somit geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während jedoch die Prognosen aus dem Zufallswegmodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Mittelwert der neueren Werte. Die von Statgraphics berechneten Konfidenzgrenzen für die Langzeitprognosen des einfachen gleitenden Durchschnitts werden nicht breiter, wenn der Prognosehorizont zunimmt. Dies ist offensichtlich nicht richtig Leider gibt es keine zugrunde liegende statistische Theorie, die uns sagt, wie sich die Vertrauensintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Konfidenzgrenzen für die längerfristigen Prognosen zu berechnen. Beispielsweise können Sie eine Tabellenkalkulation einrichten, in der das SMA-Modell für die Vorhersage von 2 Schritten im Voraus, 3 Schritten voraus usw. innerhalb der historischen Datenprobe verwendet wird. Sie könnten dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addieren und Subtrahieren von Vielfachen der geeigneten Standardabweichung konstruieren. Wenn wir einen 9-term einfachen gleitenden Durchschnitt ausprobieren, erhalten wir sogar noch bessere Prognosen und mehr eine nacheilende Wirkung: Das Durchschnittsalter beträgt jetzt 5 Perioden ((91) / 2). Wenn wir einen 19-term gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10 an: Beachten Sie, dass die Prognosen tatsächlich hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welches Maß an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistiken vergleicht, darunter auch einen 3-Term-Durchschnitt: Modell C, der 5-term gleitende Durchschnitt, ergibt den niedrigsten Wert von RMSE mit einer kleinen Marge über die 3 - term und 9-Term-Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Rückkehr nach oben.) Browns Einfache Exponentialglättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, daß es die letzten k-Beobachtungen gleich und vollständig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise diskontiert werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die zweitletzte erhalten, und die 2. jüngsten sollten ein wenig mehr Gewicht als die 3. jüngsten erhalten, und bald. Das einfache exponentielle Glättungsmodell (SES) erfüllt dies. 945 bezeichnen eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Reihe L zu definieren, die den gegenwärtigen Pegel (d. H. Den lokalen Mittelwert) der Serie, wie er aus Daten bis zu der Zeit geschätzt wird, darstellt. Der Wert von L zur Zeit t wird rekursiv von seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorher geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf die neueste steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuelle geglättete Wert: Äquivalent können wir die nächste Prognose direkt in Form früherer Prognosen und früherer Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose durch Anpassung der bisherigen Prognose in Richtung des bisherigen Fehlers um einen Bruchteil 945 erhalten Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Abzinsungsfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu verwenden, wenn Sie das Modell in einer Tabellenkalkulation implementieren Einzelne Zelle und enthält Zellverweise, die auf die vorhergehende Prognose, die vorherige Beobachtung und die Zelle mit dem Wert von 945 zeigen. Beachten Sie, dass, wenn 945 1, das SES-Modell entspricht einem zufälligen Weg-Modell (ohne Wachstum). Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, wobei angenommen wird, dass der erste geglättete Wert gleich dem Mittelwert gesetzt ist. (Zurück zum Seitenanfang) Das Durchschnittsalter der Daten in der Simple-Exponential-Glättungsprognose beträgt 1/945 relativ zu dem Zeitraum, für den die Prognose berechnet wird. (Dies sollte nicht offensichtlich sein, kann aber leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher zu Verzögerungen hinter den Wendepunkten um etwa 1/945 Perioden. Wenn beispielsweise 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Eine Verzögerung) ist die einfache exponentielle Glättungsprognose (SES) der simplen gleitenden Durchschnittsprognose (SMA) etwas überlegen, weil sie relativ viel mehr Gewicht auf die jüngste Beobachtung - i. e stellt. Es ist etwas mehr quresponsivequot zu Änderungen, die sich in der jüngsten Vergangenheit. Zum Beispiel haben ein SMA - Modell mit 9 Terminen und ein SES - Modell mit 945 0,2 beide ein durchschnittliches Alter von 5 Jahren für die Daten in ihren Prognosen, aber das SES - Modell legt mehr Gewicht auf die letzten 3 Werte als das SMA - Modell und am Gleiches gilt für die Werte von mehr als 9 Perioden, wie in dieser Tabelle gezeigt: 822forget8221. Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der kontinuierlich variabel ist und somit leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Serie ergibt sich wie folgt: Das Durchschnittsalter der Daten in dieser Prognose beträgt 1 / 0,2961 3,4 Perioden, was ähnlich wie bei einem 6-Term-Simple Moving ist durchschnittlich. Die Langzeitprognosen aus dem SES-Modell sind eine horizontale Gerade. Wie im SMA-Modell und dem Random-Walk-Modell ohne Wachstum. Es ist jedoch anzumerken, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftigen Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das Zufallswegmodell. Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbarer ist als das Zufallswandermodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So dass die statistische Theorie der ARIMA-Modelle eine solide Grundlage für die Berechnung der Konfidenzintervalle für das SES-Modell bildet. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht sonderbaren Differenz, einem MA (1) - Term und kein konstanter Term. Ansonsten als quotARIMA (0,1,1) - Modell ohne Konstantquot bekannt. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Größe 1 - 945 im SES-Modell. Wenn Sie zum Beispiel ein ARIMA-Modell (0,1,1) ohne Konstante an die hier analysierte Serie anpassen, ergibt sich der geschätzte MA (1) - Koeffizient auf 0,7029, was fast genau ein Minus von 0,2961 ist. Es ist möglich, die Annahme eines von Null verschiedenen konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Dazu wird ein ARIMA-Modell mit einer nicht sonderbaren Differenz und einem MA (1) - Term mit konstantem, d. H. Einem ARIMA-Modell (0,1,1) mit konstantem Wert angegeben. Die langfristigen Prognosen haben dann einen Trend, der dem durchschnittlichen Trend über den gesamten Schätzungszeitraum entspricht. Sie können dies nicht in Verbindung mit saisonalen Anpassungen tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA gesetzt ist. Sie können jedoch einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Prognoseverfahren verwenden. Die prozentuale Zinssatzquote (prozentuale Wachstumsrate) pro Periode kann als der Steigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmuswandlung angepasst ist, oder es kann auf anderen unabhängigen Informationen bezüglich der langfristigen Wachstumsperspektiven beruhen . (Rückkehr nach oben.) Browns Linear (dh doppelt) Exponentielle Glättung Die SMA-Modelle und SES-Modelle gehen davon aus, dass es in den Daten keine Tendenzen gibt (die in der Regel in Ordnung sind oder zumindest nicht zu schlecht für 1- Wenn die Daten relativ verrauscht sind), und sie können modifiziert werden, um einen konstanten linearen Trend, wie oben gezeigt, zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen das Rauschen auszeichnet, und wenn es notwendig ist, mehr als eine Periode vorher zu prognostizieren, könnte die Schätzung eines lokalen Trends auch sein Ein Problem. Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungsmodell (LES) zu erhalten, das lokale Schätzungen sowohl des Niveaus als auch des Trends berechnet. Das einfachste zeitvariable Trendmodell ist Browns lineares exponentielles Glättungsmodell, das zwei verschiedene geglättete Serien verwendet, die zu verschiedenen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Eine weiterentwickelte Version dieses Modells, Holt8217s, wird unten diskutiert.) Die algebraische Form des Brown8217s linearen exponentiellen Glättungsmodells, wie die des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von unterschiedlichen, aber äquivalenten Formen ausgedrückt werden. Die quadratische quadratische Form dieses Modells wird gewöhnlich wie folgt ausgedrückt: Sei S die einfach geglättete Reihe, die durch Anwendung einfacher exponentieller Glättung auf Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch: (Erinnern wir uns, Exponentielle Glättung, dies wäre die Prognose für Y in der Periode t1.) Dann sei Squot die doppelt geglättete Reihe, die man erhält, indem man eine einfache exponentielle Glättung (unter Verwendung desselben 945) auf die Reihe S anwendet: Schließlich die Prognose für Ytk. Für jedes kgt1 ist gegeben durch: Dies ergibt e & sub1; & sub0; (d. h. Cheat ein Bit, und die erste Prognose ist gleich der tatsächlichen ersten Beobachtung) und e & sub2; Y & sub2; 8211 Y & sub1; Nach denen die Prognosen unter Verwendung der obigen Gleichung erzeugt werden. Dies ergibt die gleichen Anpassungswerte wie die Formel auf der Basis von S und S, wenn diese mit S 1 S 1 Y 1 gestartet wurden. Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination von exponentieller Glättung mit saisonaler Anpassung veranschaulicht. Holt8217s Lineares Exponentialglättung Brown8217s LES-Modell berechnet lokale Schätzungen von Pegel und Trend durch Glätten der letzten Daten, aber die Tatsache, dass dies mit einem einzigen Glättungsparameter erfolgt, legt eine Einschränkung für die Datenmuster fest, die er anpassen kann: den Pegel und den Trend Dürfen nicht zu unabhängigen Preisen variieren. Holt8217s LES-Modell adressiert dieses Problem durch zwei Glättungskonstanten, eine für die Ebene und eine für den Trend. Zu jedem Zeitpunkt t, wie in Brown8217s-Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T t der lokalen Trend. Hier werden sie rekursiv aus dem zum Zeitpunkt t beobachteten Wert von Y und den vorherigen Schätzungen von Pegel und Trend durch zwei Gleichungen berechnet, die exponentielle Glättung separat anwenden. Wenn der geschätzte Pegel und der Trend zum Zeitpunkt t-1 L t82091 und T t-1 sind. Dann ist die Prognose für Y tshy, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1. Wenn der tatsächliche Wert beobachtet wird, wird die aktualisierte Schätzung des Pegels rekursiv berechnet, indem zwischen Y tshy und seiner Prognose L t-1 T t-1 unter Verwendung von Gewichten von 945 und 1- 945 interpoliert wird. Die Änderung des geschätzten Pegels, Nämlich L t 8209 L t82091. Kann als eine verrauschte Messung des Trends zum Zeitpunkt t interpretiert werden. Die aktualisierte Schätzung des Trends wird dann rekursiv berechnet, indem zwischen L t 8209 L t82091 und der vorherigen Schätzung des Trends T t-1 interpoliert wird. Unter Verwendung der Gewichte von 946 und 1-946: Die Interpretation der Trendglättungskonstante 946 ist analog zu der Pegelglättungskonstante 945. Modelle mit kleinen Werten von 946 nehmen an, dass sich der Trend mit der Zeit nur sehr langsam ändert, während Modelle mit Größere 946 nehmen an, dass sie sich schneller ändert. Ein Modell mit einem großen 946 glaubt, dass die ferne Zukunft sehr unsicher ist, da Fehler in der Trendschätzung bei der Prognose von mehr als einer Periode ganz wichtig werden. (Rückkehr nach oben) Die Glättungskonstanten 945 und 946 können auf übliche Weise geschätzt werden, indem der mittlere quadratische Fehler der 1-Schritt-Voraus-Prognosen minimiert wird. Wenn dies in Statgraphics getan wird, erweisen sich die Schätzungen als 945 0.3048 und 946 0,008. Der sehr geringe Wert von 946 bedeutet, dass das Modell eine sehr geringe Veränderung im Trend von einer Periode zur nächsten annimmt, so dass dieses Modell im Grunde versucht, einen langfristigen Trend abzuschätzen. In Analogie zum Durchschnittsalter der Daten, die für die Schätzung der lokalen Ebene der Serie verwendet werden, ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, proportional zu 1/946, wenn auch nicht exakt gleich es. In diesem Falle ergibt sich 1 / 0,006 125. Dies ist eine sehr genaue Zahl, da die Genauigkeit der Schätzung von 946 nicht wirklich 3 Dezimalstellen beträgt, sondern dieselbe von der gleichen Größenordnung wie die Stichprobengröße von 100 ist , So dass dieses Modell ist im Durchschnitt über eine ganze Menge Geschichte bei der Schätzung der Trend. Das Prognose-Diagramm unten zeigt, dass das LES-Modell einen etwas größeren lokalen Trend am Ende der Serie schätzt als der im SEStrend-Modell geschätzte konstante Trend. Außerdem ist der Schätzwert von 945 fast identisch mit dem, der durch Anpassen des SES-Modells mit oder ohne Trend erhalten wird, so dass dies fast das gleiche Modell ist. Nun, sehen diese aussehen wie vernünftige Prognosen für ein Modell, das soll Schätzung einer lokalen Tendenz Wenn Sie 8220eyeball8221 dieser Handlung, sieht es so aus, als ob der lokale Trend nach unten am Ende der Serie gedreht hat Was ist passiert Die Parameter dieses Modells Wurden durch Minimierung des quadratischen Fehlers von 1-Schritt-Voraus-Prognosen, nicht längerfristigen Prognosen, abgeschätzt, wobei der Trend keinen großen Unterschied macht. Wenn alles, was Sie suchen, 1-Schritt-vor-Fehler sind, sehen Sie nicht das größere Bild der Trends über (sagen) 10 oder 20 Perioden. Um dieses Modell im Einklang mit unserer Augapfel-Extrapolation der Daten zu erhalten, können wir die Trendglättungskonstante manuell anpassen, so dass sie eine kürzere Basislinie für die Trendschätzung verwendet. Wenn wir beispielsweise 946 0,1 setzen, beträgt das durchschnittliche Alter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, 10 Perioden, was bedeutet, dass wir den Trend über die letzten 20 Perioden oder so mitteln. Here8217s, was das Prognose-Plot aussieht, wenn wir 946 0,1 setzen, während 945 0,3 halten. Dies scheint intuitiv vernünftig für diese Serie, obwohl es wahrscheinlich gefährlich, diesen Trend mehr als 10 Perioden in der Zukunft zu extrapolieren. Was ist mit den Fehlerstatistiken Hier ist ein Modellvergleich für die beiden oben gezeigten Modelle sowie drei SES-Modelle. Der optimale Wert von 945 für das SES-Modell beträgt etwa 0,3, aber ähnliche Ergebnisse (mit etwas mehr oder weniger Reaktionsfähigkeit) werden mit 0,5 und 0,2 erhalten. (A) Holts linearer Exp. Glättung mit alpha 0.3048 und beta 0,008 (B) Holts linear exp. Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,2 Ihre Stats sind nahezu identisch, so dass wir wirklich die Wahl auf der Basis machen können Von 1-Schritt-Vorhersagefehlern innerhalb der Datenprobe. Wir müssen auf andere Überlegungen zurückgreifen. Wenn wir glauben, dass es sinnvoll ist, die aktuelle Trendschätzung auf das, was in den letzten 20 Perioden passiert ist, zugrunde zu legen, können wir für das LES-Modell mit 945 0,3 und 946 0,1 einen Fall machen. Wenn wir agnostisch sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle leichter zu erklären sein, und würde auch für die nächsten 5 oder 10 Perioden mehr Mittelprognosen geben. (Rückkehr nach oben.) Welche Art von Trend-Extrapolation am besten ist: horizontal oder linear Empirische Evidenz deutet darauf hin, dass es, wenn die Daten bereits für die Inflation angepasst wurden (wenn nötig), unprätent ist, kurzfristige lineare Werte zu extrapolieren Trends sehr weit in die Zukunft. Die heutigen Trends können sich in Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, verstärkte Konkurrenz und konjunkturelle Abschwünge oder Aufschwünge in einer Branche abschwächen. Aus diesem Grund führt eine einfache exponentielle Glättung oft zu einer besseren Out-of-Probe, als ansonsten erwartet werden könnte, trotz ihrer quotnaivequot horizontalen Trend-Extrapolation. Damped Trendmodifikationen des linearen exponentiellen Glättungsmodells werden in der Praxis häufig auch eingesetzt, um in seinen Trendprojektionen eine Note des Konservatismus einzuführen. Das Dämpfungs-Trend-LES-Modell kann als Spezialfall eines ARIMA-Modells, insbesondere eines ARIMA-Modells (1,1,2), implementiert werden. Es ist möglich, Konfidenzintervalle um langfristige Prognosen zu berechnen, die durch exponentielle Glättungsmodelle erzeugt werden, indem man sie als Spezialfälle von ARIMA-Modellen betrachtet. (Achtung: Nicht alle Software berechnet die Konfidenzintervalle für diese Modelle korrekt.) Die Breite der Konfidenzintervalle hängt ab von (i) dem RMS-Fehler des Modells, (ii) der Art der Glättung (einfach oder linear) (iii) dem Wert (S) der Glättungskonstante (n) und (iv) die Anzahl der Perioden vor der Prognose. Im Allgemeinen breiten sich die Intervalle schneller aus, da 945 im SES-Modell größer wird und sich viel schneller ausbreiten, wenn lineare statt einfache Glättung verwendet wird. Dieses Thema wird im Abschnitt "ARIMA-Modelle" weiter erläutert. (Zurück zum Seitenanfang.) 5.2 Glättungszeitreihe Die Glättung erfolgt in der Regel, um Muster, Trends zB in Zeitreihen besser zu sehen. Im Allgemeinen glätten Sie die unregelmäßige Rauheit, um ein klareres Signal zu sehen. Für saisonale Daten, könnten wir glätten die Saisonalität, so dass wir den Trend identifizieren können. Smoothing stellt uns nicht mit einem Modell, aber es kann ein guter erster Schritt bei der Beschreibung der verschiedenen Komponenten der Serie. Der Begriff Filter wird manchmal verwendet, um ein Glättungsverfahren zu beschreiben. Wenn zum Beispiel der geglättete Wert für eine bestimmte Zeit als eine lineare Kombination von Beobachtungen für Umgebungszeiten berechnet wird, kann man sagen, dass wir ein lineares Filter auf die Daten angewandt haben (nicht dasselbe wie das Ergebnis, dass das Ergebnis eine gerade Linie ist der Weg). Die traditionelle Verwendung des Begriffs gleitender Durchschnitt ist, dass wir zu jedem Zeitpunkt (möglicherweise gewichtete) Mittelwerte der beobachteten Werte bestimmen, die eine bestimmte Zeit umgeben. Zum Zeitpunkt t. Ein zentrierter gleitender Durchschnitt der Länge 3 mit gleichen Gewichten wäre der Mittelwert der Werte zu Zeiten t -1. T. Und t1. Um Saisonalität aus einer Serie wegzunehmen, so können wir besser sehen Trend, würden wir einen gleitenden Durchschnitt mit einer Länge Saisonspanne verwenden. Somit wurde in der geglätteten Reihe jeder geglättete Wert über alle Jahreszeiten gemittelt. Dies kann getan werden, indem man einen einseitigen gleitenden Durchschnitt betrachtet, in dem Sie alle Werte für die Werte der letzten Jahre oder einen zentrierten gleitenden Durchschnitt, in dem Sie Werte sowohl vor als auch nach der aktuellen Uhrzeit verwenden, mittlere. Für vierteljährliche Daten können wir beispielsweise einen geglätteten Wert für die Zeit t als (x t x t - 1 x t - 2 x t - 3) / 4, den Durchschnitt dieser Zeit und die vorhergehenden 3 Quartale, definieren. Im R-Code ist dies ein einseitiger Filter. Ein zentrierter gleitender Durchschnitt erzeugt ein wenig Schwierigkeit, wenn wir eine gerade Anzahl von Zeitperioden in der Saisonspanne haben (wie wir es normalerweise tun). Um Saisonalität in vierteljährlichen Daten zu glätten. Um Trend zu identifizieren, ist die übliche Konvention, den gleitenden Durchschnitt des gleitenden Mittels zum Zeitpunkt t zu verwenden, um Saisonalität in den Monatsdaten weg zu glätten. Um den Trend zu identifizieren, besteht die übliche Konvention darin, den zum Zeitpunkt t geglätteten gleitenden Durchschnitt zu verwenden. Das heißt, wir setzen das Gewicht 1/24 auf Werte zu Zeiten t6 und t6 und Gewicht 1/12 auf alle Werte zu allen Zeiten zwischen t5 und T5. In der R-Filter-Befehl, auch einen zweiseitigen Filter, wenn wir Werte, die sowohl vor als auch nach der Zeit, für die Glättung wurden verwendet werden. Beachten Sie, dass auf Seite 71 unseres Buches die Autoren gleiche Gewichte über einen zentrierten saisonalen gleitenden Durchschnitt anwenden. Das ist auch okay. Zum Beispiel kann eine vierteljährliche Glättung geglättet werden zum Zeitpunkt t ist Frac x frac x frac xt frac x frac x Ein monatlich glatter könnte ein Gewicht von 1/13 auf alle Werte von Zeiten t-6 bis t6 anwenden. Der Code, den die Autoren auf Seite 72 verwenden, nutzt einen rep-Befehl, der einen Wert eine bestimmte Anzahl von Malen wiederholt. Sie verwenden nicht den Filterparameter innerhalb des Filterbefehls. Beispiel 1 Vierteljährliche Bierproduktion in Australien In Lektion 1 und Lektion 4 haben wir eine Reihe von vierteljährlichen Bierproduktionen in Australien betrachtet. Der folgende R-Code erzeugt eine geglättete Reihe, die es ermöglicht, das Trendmuster zu sehen und dieses Trendmuster auf demselben Graphen wie die Zeitreihen aufzuzeichnen. Der zweite Befehl erstellt und speichert die geglättete Serie im Objekt namens trendpattern. Beachten Sie, dass innerhalb des Filterbefehls der Parameter benannte Filter die Koeffizienten für unsere Glättung ergibt und Seiten 2 eine zentrierte Glättung berechnet. Beerprod scan (beerprod. dat) trendpattern filter (beerprod, filter c (1/8, 1/4, 1/4, 1/4, 1/8), seiten2) plot (beerprod, typ b, gleitender durchschnittlicher jährlicher trend ) Lines (trendpattern) Heres das Ergebnis: Wir können das Trendmuster von den Datenwerten subtrahieren, um einen besseren Einblick in die Saisonalität zu erhalten. Das Ergebnis: Eine weitere Möglichkeit zur Glättung von Reihen, um Trend zu sehen, ist der einseitige Filter trendpattern2 filter (beerprod, filter c (1/4, 1/4, 1/4, 1/4), seiten1) Damit ist der geglättete Wert der Durchschnitt des vergangenen Jahres. Beispiel 2. U. S. Monatliche Arbeitslosigkeit In den Hausaufgaben für Woche 4 sahen Sie eine monatliche Reihe von US-Arbeitslosigkeit für 1948-1978. Heres eine Glättung getan, um den Trend zu betrachten. Trendunemployfilter (arbeitslos, filterc (1 / 24,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12, (Trendunemploy, start c (1948,1), freq 12) Handlung (trendunemploy, mainTrend in US-Arbeitslosigkeit, 1948-1978, xlab-Jahr) Nur der geglättete Trend ist gezeichnet. Der zweite Befehl identifiziert die Kalenderzeitmerkmale der Serie. Das macht die Handlung eine sinnvollere Achse. Die Handlung folgt. Für nicht-saisonale Serien, Sie Arent gebunden, um über eine bestimmte Spanne glätten. Zur Glättung sollten Sie mit gleitenden Mittelwerten verschiedener Spannen experimentieren. Diese Zeitspannen könnten relativ kurz sein. Das Ziel ist, um die rauen Kanten zu klopfen, um zu sehen, welche Tendenz oder Muster dort sein könnte. Andere Glättungsmethoden (Abschnitt 2.4) Abschnitt 2.4 beschreibt einige anspruchsvolle und nützliche Alternativen zur gleitenden mittleren Glättung. Die Details können skizzenhaft erscheinen, aber das ist okay, weil wir nicht wollen, in vielen Details für diese Methoden zu erhalten. Von den alternativen Methoden, die in Abschnitt 2.4 beschrieben werden, kann die niedrigste (lokal gewichtete Regression) am häufigsten verwendet werden. Beispiel 2 Fortsetzung Das folgende Diagramm ist geglättet Trendlinie für die US-Arbeitslosen-Serie, gefunden mit einem Lowess Glättung, in dem eine erhebliche Menge (2/3) zu jedem geglättet Schätzung beigetragen. Beachten Sie, dass dies die Serie mehr aggressiv als die gleitenden Durchschnitt geglättet. Die Kommandos waren Arbeitslosigkeit ts (Arbeitslosigkeit, Anfang c (1948,1), freq12) Handlung (Lowess (Arbeitslosigkeit, f 2/3), Haupt Lowess Glättung der US-Arbeitslosigkeit Trend) Single Exponential Glättung Die grundlegende Vorhersagegleichung für einzelne exponentielle Glättung Wird oft als Hut gegeben alpha xt (1-alpha) hat t text Wir prognostizieren, dass der Wert von x zum Zeitpunkt t1 eine gewichtete Kombination des beobachteten Wertes zum Zeitpunkt t und des prognostizierten Wertes zum Zeitpunkt t ist. Obwohl die Methode eine Glättungsmethode genannt wird, wird sie hauptsächlich für Kurzzeitprognosen verwendet. Der Wert von heißt Glättungskonstante. Aus welchem ​​Grund auch immer, 0.2 ist eine beliebte Standard-Auswahl von Programmen. Dies ergibt ein Gewicht von 0,2 auf die neueste Beobachtung und ein Gewicht von 1,2,8 auf die jüngste Prognose. Bei einem relativ kleinen Wert wird die Glättung relativ umfangreicher sein. Bei einem relativ großen Wert ist die Glättung relativ weniger umfangreich, da mehr Gewicht auf den beobachteten Wert gesetzt wird. Dies ist eine einfache, einstufige Prognosemethode, die auf den ersten Blick kein Modell für die Daten erfordert. Tatsächlich ist dieses Verfahren äquivalent zu der Verwendung eines ARIMA (0,1,1) - Modells ohne Konstante. Das optimale Verfahren ist, ein ARIMA (0,1,1) Modell an den beobachteten Datensatz anzupassen und die Ergebnisse zu verwenden, um den Wert von zu bestimmen. Dies ist optimal im Sinne der Schaffung der besten für die bereits beobachteten Daten. Obwohl das Ziel eine Glättung und eine Vorausschätzung ist, bringt die Äquivalenz zum ARIMA-Modell (0,1,1) einen guten Punkt. Wir sollten nicht blind gelten exponentielle Glättung, weil die zugrunde liegende Prozess möglicherweise nicht gut modelliert werden durch eine ARIMA (0,1,1). ARIMA (0,1,1) und exponentielle Glättungsäquivalenz Betrachten wir ein ARIMA (0,1,1) mit Mittelwert 0 für die ersten Differenzen, xt - x t-1: Anfangshut amp amp xt theta1 wt amp amp xt theta1 (xt - hat t) amp amp (1 theta1) xt - theta1hat neigen. Wenn wir (1 1) und damit - (1) 1 zulassen, sehen wir die Äquivalenz zu Gleichung (1) oben. Warum die Methode aufgerufen wird Exponentielle Glättung Dies ergibt die folgenden: Anfangshut amp amp alpha xt (1-alpha) alpha x (1-alpha) Hut amp amp alpha xt alpha (1-alpha) x (1-alpha) 2hat end Weiter Auf diese Weise durch sukzessives Ersetzen des prognostizierten Wertes auf der rechten Seite der Gleichung. Dies führt zu: Hut alpha xt alpha (1-alpha) x alpha (1-alpha) 2 x dots alpha (1-alpha) jx dots alpha (1-alpha) x1 text Gleichung 2 zeigt, dass der prognostizierte Wert ein gewichteter Durchschnitt ist Aller vergangenen Werte der Serie, mit exponentiell wechselnden Gewichten, wie wir zurück in der Serie bewegen. Optimale Exponentialglättung in R Grundsätzlich passen wir nur einen ARIMA (0,1,1) an die Daten an und bestimmen den Koeffizienten. Wir können die Anpassung der glatten durch Vergleich der vorhergesagten Werte mit der tatsächlichen Reihe untersuchen. Exponentielle Glättung neigt dazu, mehr als eine Prognose-Tool als eine echte glatte verwendet werden, so waren auf der Suche zu sehen, ob wir eine gute Passform haben. Beispiel 3. N 100 monatliche Beobachtungen zum Logarithmus eines Ölpreisindexes in den Vereinigten Staaten. Die Datenreihe ist: Eine Anpassung von ARIMA (0,1,1) in R ergab einen MA (1) - Koeffizienten von 0,3877. So (1 1) 1,3877 und 1- -0,3877. Die exponentielle Glättungsvorhersagegleichung ist Hut 1.3877xt - 0.3877hat t Zum Zeitpunkt 100 ist der beobachtete Wert der Reihe x 100 0.86601. Der vorhergesagte Wert für die Serie zu diesem Zeitpunkt ist also die Prognose für die Zeit 101 hat 1.3877x - 0.3877hat 1.3877 (0.86601) -0.3877 (0.856789) 0.8696 Im Folgenden ist, wie gut die glattere passt die Serie. Sein eine gute Passform. Das ist ein gutes Zeichen für die Prognose, der Hauptzweck für diese glatter. Hier sind die Befehle, die verwendet werden, um die Ausgabe für dieses Beispiel zu erzeugen: Ölindexabtastung (oildata. dat) Diagramm (Ölindex, Typ b, Hauptprotokoll der Ölindex-Reihe) expsmoothfit arima (Ölindex, Auftrag c (0,1,1)) expsmoothfit Um zu sehen, die Arima-Ergebnisse prognostiziert Ölindex - expsmoothfitresiduals vorhergesagten Werten Plot (oilindex, typeb, main Exponential Glättung der Log-of-Oil-Index) Zeilen (Vorhersagen) 1.3877oilindex100-0.3877predicteds100 Prognose für die Zeit 101 Double Exponential Glättung Doppelte exponentielle Glättung könnte verwendet werden, wenn theres (Langfristig oder kurzfristig), aber keine Saisonalität. Im Wesentlichen erzeugt das Verfahren eine Prognose durch Kombinieren von exponentiell geglätteten Schätzungen des Trends (Steigung einer Geraden) und des Pegels (grundsätzlich des Abschnitts einer Geraden). Zur Aktualisierung dieser beiden Komponenten werden jeweils zwei verschiedene Gewichte oder Glättungsparameter verwendet. Das Glättungsniveau entspricht mehr oder weniger einer einfachen exponentiellen Glättung der Datenwerte, und der geglättete Trend entspricht mehr oder weniger einer einfachen exponentiellen Glättung der ersten Differenzen. Das Verfahren entspricht der Anpassung eines ARIMA (0,2,2) Modells, ohne Konstante kann es mit einem ARIMA (0,2,2) Fit durchgeführt werden. (1-B) 2 xt (1theta1B theta2B2) wt. NavigationR - Prognose Wir werden diskutieren, wie diese Methoden funktionieren und wie sie verwendet werden. (EWMA) Entsprechend ARIMA (0,1,1) - Modell mit konstantem Term Für die geglätteten Daten zur Darstellung verwenden Prognosen einfach gleitender Durchschnitt: Vergangene Beobachtungen werden gleich exponentiell gewichtet Glättung: Zuordnung von exponentiell abnehmenden Gewichten über Zeit Formel xt - Rohdatenfolge st - Ausgabe des exponentiellen Glättungsalgorithmus (Schätzung des nächsten Wertes von x) - Glättungsfaktor. 0160lt160160lt1601.Choosing rechts keine formale Methode der Wahl der statistischen Technik kann verwendet werden, um den Wert von (zB OLS) zu optimieren, desto größer wird die enge es naiv Prognose bekommt (die gleichen Ports wie Original-Serie mit einer Periode lag) Double Exponential Smoothing bearbeiten Einfach Exponentielle Glättung nicht gut, wenn es einen Trend gibt (es wird immer Bias) doppelte exponentielle Glättung ist eine Gruppe von Methoden, die sich mit dem Problem Holt-Winters doppelte exponentielle Glättung bearbeiten Und für t gt 1, wo ist der Daten-Glättungsfaktor. 0160lt160160lt1601, und ist der Trend Glättungsfaktor. 0160lt160160lt1601. Ausgabe F tm - eine Schätzung des Wertes von x zum Zeitpunkt tm, mgt0 basierend auf den Rohdaten bis zum Zeitpunkt t Triple exponentielle Glättungsbearbeitung berücksichtigt saisonale Änderungen sowie Trends, die zuerst von Holts Schüler Peter Winters, 1960 Input, vorgeschlagen wurden Xt - Rohdatenfolge der Beobachtungen t 1601600 L Länge eines Zyklus der jahreszeitlichen Veränderung Die Methode berechnet: eine Trendlinie für die saisonalen Datenindizes, die die Werte in der Trendlinie gewichten, und zwar basierend darauf, wo dieser Zeitpunkt im Zyklus der Länge L fällt. S t den geglätteten Wert des konstanten Teils für die Zeit t darstellt. Bt die Reihenfolge der besten Schätzungen des linearen Trends darstellt, die den saisonalen Änderungen ct überlagert sind, ist die Folge saisonaler Korrekturfaktoren ct der erwartete Anteil des prognostizierten Trends zu jedem Zeitpunkt t mod L im Zyklus, den die Beobachtungen annehmen Initialisieren die saisonalen Indizes c tL muss es mindestens einen kompletten Zyklus in den Daten geben Der Ausgang des Algorithmus wird wieder als F tm geschrieben. Eine Schätzung des Wertes von x zum Zeitpunkt tm, mgt0 auf der Basis der Rohdaten bis zum Zeitpunkt t. Die dreifache Exponentialglättung wird durch die Formeln angegeben, wo der Datenglättungsfaktor ist. 0160lt160160lt1601, ist der Trend Glättung Faktor. 0160lt160160lt1601, und ist die saisonale Änderung Glättungsfaktor. 0160lt160160lt1601. Die allgemeine Formel für die anfängliche Trendschätzung b 0 ist: Einstellen der Anfangsschätzungen für die Saisonindizes c i für i 1,2. L ist ein bisschen mehr beteiligt. Wenn N die Anzahl der vollständigen Zyklen in Ihren Daten ist, dann: Beachten Sie, dass A j der Mittelwert von x im j-ten Zyklus Ihrer Daten ist. ETS edit Overriding parameters bearbeiten


No comments:

Post a Comment